Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation

نویسندگان

  • Chou-Long Huang
  • Paul A. Slesinger
  • Patrick J. Casey
  • Yuh Nung Jan
  • Lily Y. Jan
چکیده

Chou-Long Huang,* t Paul A. Slesinger,* Patrick J. Casey,t Yuh Nung Jan,* and Lily Y. Jan* *Howard Hughes Medical Institute Department of Physiology Department of Biochemistry University of California San Francisco, California 94143-0724 tDivision of Nephrology Department of Medicine University of California San Francisco, California 94143-0532 1:Department of Molecular Cancer Biology Department of Biochemistry Duke University Medical Center Durham, North Carolina 27710-3686

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3.

G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a...

متن کامل

A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ

G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologou...

متن کامل

A recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins

GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resu...

متن کامل

Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel

The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents ...

متن کامل

Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297.

ML297 was recently identified as a potent and selective small molecule agonist of G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels. Here, we show ML297 selectively activates recombinant neuronal GIRK channels containing the GIRK1 subunit in a manner that requires phosphatidylinositol-4,5-bisphosphate (PIP2), but is otherwise distinct from receptor-induced, G-protein-dependent chann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995